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Abstract
Type-based library search allows developers to efficiently
find reusable software components by their type signatures,
as exemplified by tools like Hoogle. This capability is espe-
cially important in interactive theorem provers (ITPs), where
reusing existing proofs can greatly accelerate development.
Previous type-based library search tools for ITPs, such as
SearchIsos and Loogle, support only a subset of desirable
search flexibilities, including argument reordering, curry-
ing/uncurrying, generalisation, and the inclusion of extra
premises. However, none can handle all these flexibilities
simultaneously, resulting in missed relevant matches. In this
work, we propose a type-based library search method based
on equational unification modulo a set of type isomorphisms
for dependent product/sum types, enabling all the desired
search flexibilities.We present a semi-algorithm for this equa-
tional unification and provide a prototype implementation
to demonstrate the feasibility of our approach.

CCSConcepts: •Theory of computation→Type theory;
Equational logic and rewriting; Automated reasoning.

Keywords: unification, dependent types, type isomorphism,
type-based library search
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1 Introduction
Effectively finding reusable software components in libraries
is a fundamental challenge in software engineering. Enhanc-
ing discoverability directly contributes to code reuse and
developer productivity.
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In 1989, Rittri proposed a powerful library search method
based on types [20]. Themotivation for this researchwas that
searching by identifier is often insufficient because names
are difficult to guess. For example, the recursor function
for lists is given different names in various libraries and
languages, such as "reduce", "foldr", or "itlist". In contrast,
type-based library search allows users to find functions using
types as queries, where types serve as an approximation
of the specification. Since this seminal work, researchers
have conducted extensive theoretical analyses and proposed
various extensions to type-based search [6–8, 19, 21].

Type-based library search has been widely and success-
fully used in real-world. One notable example is Hoogle [17],
a type-based library search engine for Haskell. According
to Neil Mitchell, the original developer of Hoogle, between
1,000 and 2,500 searches are performed daily, indicating that
Hoogle is a widely used and valuable tool for Haskell develop-
ers [18]. Type-based library search has also been introduced
to other statically typed programming languages such as
Scala [27] and Java [9].
Just as Haskell users benefit from Hoogle, users of in-

teractive theorem provers (ITPs) frequently need to locate
not only definitions but also lemmas and theorems by their
types (i.e., propositions, via the Curry-Howard correspon-
dence). Because proving theorems can be time-consuming,
it is essential to effectively discover and reuse existing re-
sults. For ITPs, it is even more critical than in conventional
programming languages, where proofs are rare. To meet
this demand, several type-based library search tools have
been developed, including SearchIsos [5], Loogle [3], and
the search commands shipped with Rocq [25], Idris [11, 24],
and Lambdapi [4, 15]. While each of these tools offers its
own search flexibility and is highly beneficial, each misses
some desirable search flexibilty. Enhancing the flexibility of
type-based search engines can yield more comprehensive
search results, thereby accelerating the process of finding
relevant components or theorems.
Our work aims to develop a more flexible type-based

search for ITPs, enabling users to discover results that previ-
ous systems might overlook. We propose using equational
unification modulo a specific set of type isomorphisms as
our solution. Our main contributions are:

• An enhanced theory of the type isomorphisms, im-
proving upon the approach in [5]
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• A semi-algorithm for unification modulo this theory
• A prototype implementation of the semi-algorithm

First of all, we present the problem framework and com-
pares previous type-based library search tools in Section 2.
Next, in Section 3, we introduce the dependent type theory
that serves as the foundation for our work. We then discuss
the type isomorphisms that are valid within the type theory
and adopt those particularly beneficial for library search. Af-
ter that, we build a semi-algorithm for equational unification
modulo the chosen type isomorphisms in Section 4. Finally,
we discuss our implementation and provide some examples
that show the behavior of our algorithm in Section 5.

2 Problem Setting and Related Work
2.1 Beneficial Search Flexibilities
The simplest strategy for type-based library search is purely
syntactic matching on types. However, this is often too
rigid and may miss potentially relevant reusable compo-
nents. More sophisticated strategies should have more flexi-
ble matching conditions. The followings are flexibilities con-
sidered beneficial in the context of ITPs.

Definitional Equality. Users may not be aware that the
library includes a type alias for commutativity statement:
Commutative 𝐴 op := (𝑥 𝑦 : 𝐴) → op𝑥 𝑦 ≡ op𝑦 𝑥 . If the
search is up to definitional equality, specifically 𝛽-conversion
and 𝛿-conversion in this case, it can identify the following
two types:

(𝑚𝑛 : N) →𝑚 + 𝑛 ≡ 𝑛 +𝑚

Commutative N _+_.

Reordering. Modulo reordering of function domains, pair
components, and symmetry of identity types. Differences
in the ordering of such components is superficial and users
always want the search strategy to ignore it. For example, the
following types should be identified. Note that the iterated
function types in the argument position are considered for
reordering in the first example.

𝐵→ (𝐵→𝐴→𝐵) → List𝐴→𝐵

(𝐴→𝐵→𝐵) →𝐵→ List𝐴→𝐵

(𝑥𝑠 : Vec𝐴 (𝑚+𝑛))→Σ𝑦𝑠 :Vec𝐴𝑚.Σ𝑧𝑠:Vec𝐴𝑛.𝑥𝑠 ≡ 𝑦𝑠 ++ 𝑧𝑠

(𝑥𝑠 : Vec𝐴 (𝑚+𝑛))→Σ𝑧𝑠 :Vec𝐴𝑛.Σ𝑦𝑠:Vec𝐴𝑚.𝑥𝑠 ≡ 𝑦𝑠 ++ 𝑧𝑠

(𝑛 : N) → 𝑛 + 0 ≡ 𝑛

(𝑛 : N) → 𝑛 ≡ 𝑛 + 0

Currying and Uncurrying. Modulo the difference of
curried function and uncurried function. While library com-
ponents are often curried, this flexibility is helpful when
functions take arguments of types defined using dependent
pairs or records. In ITPs, the relation𝑚 divides 𝑛 is usually
defined as:𝑚 | 𝑛 := Σ𝑞:N.𝑚 × 𝑞 ≡ 𝑛. However, a user may
not be aware that this relation exists in the library and may

search for a function involving two natural numbers where
one divides the other:

(𝑚𝑛𝑞 : N) →𝑚 × 𝑞 ≡ 𝑛 → · · · .
If the search is modulo currying/uncurrying (and definitional
equality), it can identify

(𝑚𝑛 : N) →𝑚 | 𝑛 → · · · .

Generalisation. Search up to generalisation. For example,
a user might query (𝑛 : N) → 𝑛 + 1 ≡ 1 + 𝑛. If the search
is up to generalisation, it can yield a more general result
(𝑚𝑛 : N) →𝑚 + 𝑛 ≡ 𝑛 +𝑚.

More Premises and Arguments. Users do not always
recognise enough premises required to derive a certain con-
sequence. Even if they do, they may prefer not to include all
the premises as it can be tedious to type. A user may query
(𝑚𝑛 : N) → (𝑚−𝑛) +𝑛 ≡𝑚. If the search has the flexibility,
it can yield (𝑚𝑛 : N) → 𝑛 ≤𝑚 → (𝑚 − 𝑛) + 𝑛 ≡𝑚.

2.2 Existing Type-based Library Search for ITPs
To support the demand for type-based library search, several
tools have been developed for ITPs and dependently-typed
programming languages. Notable examples include:

• SearchIsos, implemented in Coq previously [5]
• Rocq’s Search command [25].
• Idris’s search command [11, 24]
• Loogle, for Lean [3].
• Lambdapi’s search command [4, 15]

Each of the search engines listed above has different ob-
jective and consequently supports a different subset of the
flexibilities. Loogle and Lamdapi search through the whole
standard libraries and such (global search) and Rocq and Idris
search within scope or a few specified modules (local search).
SearchIsos implements both. Local library search tools usu-
ally come with richer search flexibilities while global library
search tools can handle a large set of definitions. Which flexi-
bilities in the previous section are considered in these library
search tools specifically? SearchIsos, Loogle and Lambdapi
search modulo reordering domains in different ways, but
these do not reorder iterated function types in argument
position. Idris has an additional support for exploiting the
symmetry of identity types. Rocq, Loogle, Lambdapi, and
Idris support generalisation and the flexibility to introduce
more premises (in different ways again). It is only SearchIsos
that adopts the currying/uncurrying flexibility. None of them
considers 𝛿-conversion.

2.3 Our Work
Our work aims to support all the flexibilities listed above. We
achieve this by employing equational unification modulo def-
initional equality (𝛽𝜂𝛿-conversion) and a chosen collection of
type isomorphisms. Reordering and currying/uncurrying are
handled by finding unifiers modulo these type isomorphisms.

16



Unification Modulo Isomorphisms between Dependent Types for Type-Based Library Search TyDe ’25, October 12–18, 2025, Singapore, Singapore

We support generalisation and the extra premises flexibility
through the use of metavariables. In particular, the latter
flexibility is realised by augmenting the query type with an
argument of unknown type, represented by a metavariable.
For example, given the query (𝑚𝑛 : N) → (𝑚 − 𝑛) + 𝑛 ≡𝑚,
we synthesise (𝑚𝑛 : N) → 𝑀 [𝑚,𝑛] → (𝑚 − 𝑛) + 𝑛 ≡ 𝑚,
where𝑀 is a metavariable that may depend on𝑚 and 𝑛.

Our approach currently targets local search since we con-
sider 𝛿-conversion; indexing all definitions from all avail-
able libraries would be prohibitively expensive. Omitting
𝛿-conversion yields a more scalable unification algorithm,
but it is still too costly to compare with each definition in
libraries for global search. This can probably be addressed
by term indexing techniques. For example, feature vector
indexing [23] can be employed to filter out candidates whose
type definitely cannot be unified with, thus reducing the
number of unification calls. Allain et al. reported that their
type-based library search tool for OCaml that implements the
indexing can quickly execute queries over the entire OCaml
environment [2]. Global search remains an important goal
we plan to address in future work.

3 Types and Isomorphisms
3.1 Types
The type theory used in this paper is a version of Martin-Löf
type theory with identity types and constant definitions. We
use 𝑥,𝑦, 𝑧 for bound variables and 𝑐, 𝑑 for constants.

𝑡,𝑢, 𝑝, 𝐴, 𝐵,𝐶 ::= Type | Π𝑥 :𝐴.𝐵 | Σ𝑥 :𝐴.𝐵 | Unit
| Id𝐴 (𝑡,𝑢) | 𝑥 | 𝑐 | 𝜆𝑥.𝑡 | 𝑡 𝑢
| (𝑡,𝑢) | 𝜋1 (𝑡) | 𝜋2 (𝑡) | tt
| refl𝐴 (𝑡) | J(𝑡1, 𝑡2, 𝑝,𝑢)

Terms are identified modulo 𝛼-conversion. We also denote
Π𝑥 :𝐴.𝐵 and Σ𝑥 :𝐴.𝐵, respectively 𝐴→𝐵 and 𝐴 × 𝐵 when
𝑥 ∉ FV(𝐵), where FV(𝐵) is the set of free variables in 𝐵. A
signature S is a collection of constant definitions, which
take the form 𝑐 : 𝐴 := 𝑡 . The typing rules are summarised
in Figure 1 in which we use type-in-type for simplicity of
presentation. The reduction rules are defined as usual from
the following one-step rules.

(𝜆𝑥.𝑡) 𝑢 ⇝ 𝑡 [𝑥 ↦→ 𝑢] (𝛽𝜆)
𝜋1 ((𝑡,𝑢)) ⇝ 𝑡 (𝛽1)
𝜋2 ((𝑡,𝑢)) ⇝ 𝑢 (𝛽2)

𝑐 ⇝ 𝑡 if 𝑐 : 𝐴 := 𝑡 ∈ S (𝛿)

The judgment 𝑡 =𝜂 𝑢 compares 𝑡 and𝑢 modulo 𝜂, i.e., modulo
(𝜆𝑥 .𝑡 𝑥) = 𝑡 if 𝑥 ∉ FV(𝑡), 𝑡 = (𝜋1 (𝑡), 𝜋2 (𝑡)), and 𝑡 = tt if
𝑡 : Unit. Two terms 𝑡 and 𝑢 are said definitionally equal or
𝛽𝜂𝛿-convertible, written 𝑡 ≃ 𝑢, if only if they can be reduced
to 𝑡 ′ and 𝑢′ respectively and 𝑡 ′ =𝜂 𝑢′.

3.2 Isomorphisms
As in the previous work on type-based library search in-
cluding SearchIsos [5, 7, 8, 19–21], we adopt definitional
isomorphism as the foundational equivalence relation for
type-based library search in order to capture the reordering
and currying/uncurrying flexibility. Informally, two types
are definitionally isomorphic if there exist mutually inverse
functions converting between them. This is formally defined
as follows.

Definition 1. (Definitional isomorphisms) Two types𝐴 and
𝐵 are (definitionally) isomorphic, written 𝐴 � 𝐵, if and only
if there exist the terms 𝑓 : 𝐴→𝐵 and 𝑓 −1 : 𝐵→𝐴 such that
𝑓 −1 ◦ 𝑓 ≃ id𝐴 and 𝑓 ◦ 𝑓 −1 ≃ id𝐵 , where id𝐴 is the identity
function on 𝐴 and ◦ is function composition. We refer to the
pair of 𝑓 and 𝑓 −1 as a definitional isomorphism between 𝐴

and 𝐵, and each 𝑓 and 𝑓 −1 as conversion functions between
𝐴 and 𝐵.

Isomorphisms are particularly well-suited for type-based
search because they are accompanied by explicit terms that
translate between types within the language. This not only
enables the identification of matching software components
but also allows for the automatic generation of conversion
functions to adapt matched components to the user’s query.
There are other forms of isomorphisms, such as propositional
isomorphisms, which we intend to explore in future work.
Now we can formally state the isomorphisms we con-

sider for type-based search. Specifically, we adopt the follow-
ing isomorphisms (with the standard conversion functions),
which we will take as equations over types and use for equa-
tional unification. This set of isomorphisms is similar to that
in SearchIsos [5], but we have excluded two isomorphisms
and added reordering for dependent products and identity
types.
𝐴 � 𝐵 if 𝐴 ≃ 𝐵 (1)
𝐴 × 𝐵 � 𝐵 ×𝐴 (2)
Σ𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 � Σ𝑥 :𝐴.Σ𝑦:𝐵 [𝑦 ↦→ 𝑥] .𝐶 [𝑥 ↦→ (𝑥,𝑦)] (3)
Π𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 � Π𝑥 :𝐴.Π𝑦:𝐵 [𝑦 ↦→ 𝑥] .𝐶 [𝑥 ↦→ (𝑥,𝑦)] (4)
Π𝑥 :𝐴.Π𝑦:𝐵.𝐶 � Π𝑦:𝐵.Π𝑥 :𝐴.𝐶 if 𝑥 ∉ FV(𝐵) ∧ 𝑦 ∉ FV(𝐴)

(5)
𝐴 × Unit � 𝐴 (6)
Σ𝑥 :Unit.𝐴 � 𝐴[𝑥 ↦→ tt] (7)
Π𝑥 :Unit.𝐴(𝑥) � 𝐴[𝑥 ↦→ tt] (8)
Id𝐴 (𝑡,𝑢) � Id𝐴 (𝑢, 𝑡) (9)

Note that the reordering for dependent products can be de-
rived from the corresponding isomorphism for dependent
sums together with currying. To justify that all of the isomor-
phisms conform to Definition 1, one additional assumption
is required. Specifically, for the symmetry of identity types
(Equation (9)), the swap operation Id𝐴 (𝑡,𝑢) → Id𝐴 (𝑢, 𝑡)must
be definitionally involutive. This property holds, for example,
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Γ ⊢ Type : Type
𝑥 : 𝐴 ∈ Γ
Γ ⊢ 𝑥 : 𝐴

𝑐 : 𝐴 := 𝑡 ∈ S
Γ ⊢ 𝑐 : 𝐴

Γ ⊢ 𝐴 : Type Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type
Γ ⊢ Π𝑥 :𝐴.𝐵 : Type

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : Π𝑥 :𝐴.𝐵

Γ ⊢ 𝑡 : Π𝑥 :𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵 [𝑥 ↦→ 𝑢]

Γ ⊢ 𝐴 : Type Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type
Γ ⊢ Σ𝑥 :𝐴.𝐵 : Type

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵 [𝑥 ↦→ 𝑡]
Γ ⊢ (𝑡,𝑢) : Σ𝑥 :𝐴.𝐵

Γ ⊢ 𝑝 : Σ𝑥 :𝐴.𝐵
Γ ⊢ 𝜋1 (𝑝) : 𝐴

Γ ⊢ 𝑝 : Σ𝑥 :𝐴.𝐵
Γ ⊢ 𝜋2 (𝑝) : 𝐵 [𝑥 ↦→ 𝜋1 (𝑝)] Γ ⊢ Unit : Type Γ ⊢ tt: Unit

Γ ⊢ 𝐴 : Type
Γ, 𝑡 : 𝐴,𝑢 : 𝐴 ⊢ Id𝐴 (𝑡,𝑢) : Type

Γ ⊢ 𝐴 : Type
Γ, 𝑡 : 𝐴 ⊢ refl𝐴 (𝑡) : Id𝐴 (𝑡, 𝑡)

Γ, 𝑡1 : 𝐴, 𝑡2 : 𝐴, 𝑝 : Id𝐴 (𝑡1, 𝑡2) ⊢ 𝐶 : Type Γ, 𝑡 : 𝐴 ⊢ 𝑢 : 𝐶 [𝑡1 ↦→ 𝑡, 𝑡2 ↦→ 𝑡, 𝑝 ↦→ refl𝐴 (𝑡)]
Γ, 𝑡1 : 𝐴, 𝑡2 : 𝐴, 𝑝 : Id𝐴 (𝑡1, 𝑡2) ⊢ J(𝑡1, 𝑡2, 𝑝,𝑢) : 𝐶

Figure 1. Typing rules

for the Path type in Cubical Agda [26], or in settings where
uniqueness of identity proofs holds definitionally as in Lean.
However, it does not generally hold for the conventional
identity type defined inductively with the canonical reflexiv-
ity constructor. Since this reordering flexibility is valuable
for type-based search, we assume that identity types are
strictly involutive. The two excluded isomorphisms are as
follows:

𝐴→Unit � Unit
Π𝑥 :𝐴.Σ𝑦:𝐵(𝑥).𝐶 (𝑥,𝑦) � Σ𝑦:(Π𝑥 :𝐴.𝐵(𝑥)).Π𝑥 :𝐴.𝐶 (𝑥,𝑦 𝑥).

The first isomorphism relates functions from 𝐴 to Unit with
Unit, while the second relates dependent functions returning
a dependent pair to a dependent pair of functions returning
each component. We exclude the isomorphism because it
has limited practical relevance for library search. The second
isomorphism is excluded due to a technical restriction, which
will be explained in Section 4.4.

3.3 Theory
As pointed out in [5], with dependencies, we cannot build a
contextual theory taking the above isomorphisms as equa-
tions. For example, given an isomorphism 𝐴 � 𝐵 and an
𝐴-indexed type 𝐶 , and let 𝑓 : 𝐴→𝐵, 𝑓 −1 : 𝐵→𝐴 be conver-
sion functions of the isomorphism. It makes no sense to ask if
Π𝑥 :𝐴.𝐶 𝑥 � Π𝑥 :𝐵.𝐶 𝑥 because the right hand side is ill-typed.
We should instead ask if Π𝑥 :𝐴.𝐶 𝑥 � Π𝑥 :𝐵.𝐶 (𝑓 −1 𝑥).

There is another interesting subtlety. The conversion func-
tions between the two types are as follows:

𝑔 : (Π𝑥 :𝐴.𝐶 (𝑥)) → (Π𝑥 :𝐵.𝐶 (𝑓 −1 𝑥)) = 𝜆ℎ.𝜆𝑥 .ℎ(𝑓 −1 𝑥)
𝑔−1 : (Π𝑥 :𝐵.𝐶 (𝑓 −1 𝑥))→(Π𝑥 :𝐴.𝐶 (𝑓 −1 (𝑓 𝑥))) = 𝜆ℎ.𝜆𝑦.𝑓 𝑥

From the definition of isomorphism, 𝐶 (𝑓 −1 (𝑓 𝑥)) is equal to
𝐶 𝑥 , and thus 𝑔−1 ◦ 𝑔 : (Π𝑥 :𝐴.𝐶 (𝑥)) → (Π𝑥 :𝐴.𝐶 (𝑥)). How-
ever, if we choose to opt out of certain 𝜂-rules or do not
assume that identity types are definitionally involutive, the
type𝐶 (𝑓 −1 (𝑓 𝑥)) may not reduce further. In this case, 𝑔−1 ◦𝑔

does not have the correct type, i.e., that of the identity func-
tion. The issue is that the conversion functions can appear
within types. For this reason, SearchIsos does not allow iso-
morphisms at the domain of dependent product/sum types
at all [5]. In our work, we relax the restriction slightly and
allow isomorphisms at the domain of non-dependent func-
tion/product types. In this case the isomorphisms for the
domain can be applied safely as conversion functions do
not appear in type. This relaxation enables, for example, the
reordering iterated function types in argument position, in-
creasing the chances of identifying reusable components
in type-based search. The resulting theory, Th, is shown
in Figure 2. The distinction between the dependent case
and the non-dependent case is reflected in the rules ThΠ𝐿 ,
Th→𝐿 , ThΣ𝐿 , and Th×𝐿 . Hereafter, we refer to the restriction
of disallowing isomorphisms at the domain as the domain
restriction.

4 Pre-unification Modulo Isomorphisms
Here, we present a semi-algorithm for pre-unification mod-
ulo the theory described in Section 3. It is loosely based on
E-unification for second-order abstract syntax [13, 14]. The
algorithm is general in that can handle arbitrary second-
order equational theory including 𝜆-calculus.
We only implement pre-unification and currently leave

flex-flex constraints unsolved. This is because going through
candidate solutions for flex-flex constraints would be quite
expensive, which leads to a slow response to the user of
search tool built upon this algorithm. The practical impact of
solving flex-flex constraints remains an open question which
we plan to address.

Our pre-unification procedure operates in an untyped
setting. The reason is that the query term is arbitrary and can
even be ill-typed. While this reduces the guarantees of well-
typedness during unification, type correctness of resulting
unifiers can be checked by post-validation. Type information
from libraries can be taken into account during unification
for benefits. For example, leveraging type information can

18



Unification Modulo Isomorphisms between Dependent Types for Type-Based Library Search TyDe ’25, October 12–18, 2025, Singapore, Singapore

𝐴 ≃ 𝐵

𝐴 =Th 𝐵
Th𝛽𝜂𝛿 Σ𝑥 :Unit.𝐴 =Th 𝐴[𝑥 ↦→ tt] ThΣ𝑈𝐿

𝐴 × Unit =Th 𝐴
ThΣ𝑈𝑅 Π𝑥 :Unit.𝐴 =Th 𝐴[𝑥 ↦→ tt] ThΠ𝑈𝐿

𝑥 ∉ FV(𝐴) 𝑥 ∉ FV(𝐵)
Σ𝑥 :𝐴.𝐵 =Th Σ𝑥 :𝐵.𝐴 ThΣComm

𝑥 ∉ FV(𝐴) 𝑦 ∉ FV(𝐵)
Π𝑥 :𝐴.Π𝑦:𝐵.𝐶 =Th Π𝑦:𝐵.Π𝑥 :𝐴.𝐶 ThΠSwap Id𝐴 (𝑡,𝑢) =Th Id𝐴 (𝑢, 𝑡)

ThIdSwap

Π𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 =Th Π𝑥 :𝐴.Π𝑦:𝐵 [𝑦 ↦→𝑥] .𝐶 [𝑥 ↦→(𝑥,𝑦)] ThCurry Σ𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 =Th Σ𝑥 :𝐴.Σ𝑦:𝐵 [𝑦 ↦→𝑥] .𝐶 [𝑥 ↦→(𝑥,𝑦)] ThΣAssoc

𝐵 =Th 𝐵′

(Π𝑥 :𝐴.𝐵) =Th (Π𝑥 :𝐴.𝐵′) ThΠ𝑅
𝑥 ∈ FV(𝐵) 𝐴 ≃ 𝐴′

(Π𝑥 :𝐴.𝐵) =Th (Π𝑥 :𝐴′ .𝐵) ThΠ𝐿
𝐴 =Th 𝐴′

(𝐴→𝐵) =Th (𝐴′ →𝐵) Th→𝐿

𝐵 =Th 𝐵′

(Σ𝑥 :𝐴.𝐵) =Th (Σ𝑥 :𝐴.𝐵′) ThΣ𝑅
𝑥 ∈ FV(𝐵) 𝐴 ≃ 𝐴′

(Σ𝑥 :𝐴.𝐵) =Th (Σ𝑥 :𝐴′ .𝐵) ThΣ𝐿
𝐴 =Th 𝐴′

(𝐴 × 𝐵) =Th (𝐴′ × 𝐵) Th×𝐿

𝐴 =Th 𝐵

𝐵 =Th 𝐴
ThSym

𝐴 =Th 𝐵 𝐵 =Th 𝐶

𝐴 =Th 𝐶
ThTrans

Figure 2. Theory Th

help prune impossible branches early when enumerating
candidates for metavariables. We leave integrating such type-
driven guidance and keeping well-typedness for future work.

4.1 Second-order Abstract Syntax and Parametrised
Metavariables

For unification, we need to add metavariables to our syn-
tax. We follow the framework of second-order abstract syn-
tax (SOAS), simply-typed syntax with variable binding and
parametrised metavariables [10]. Higher-order unification
relies on function application and metavariables are applied
to terms in context to represent dependencies. On the other
hand, parametrised metavariables can keep dependencies in
a more direct way. One can think a parametrised metavari-
ables similar to flex terms in higher-order unification.
We use 𝑀 for metavariables and write 𝑀 [𝑡1, · · · , 𝑡𝑛] for

meta-application. The type signature of a parametrised meta-
variable is like𝑀 : [★, · · · ,★]★. Here★means the "any" type
(we are working in an untyped setting). For example, if𝑀1
takes two parameters then𝑀1 : [★,★]★, and if𝑀2 no param-
eter,𝑀2 : []★.

4.2 Pre-unification Semi-algorithm
We present the pre-unification algorithm as transition rules
on a set of constraints. A constraint is a judgement of form
Θ | Γ ⊢ 𝑡

?
� 𝑢 or Θ | Γ ⊢ 𝑡

?
= 𝑢 where Θ is the con-

text of (parametrised) metavariables, Γ is the context of
bound variables, and 𝑡 and 𝑢 are terms in context that we
would like to unify.

?
� and ?

= mean that the constraint is
to be solved up to the type isomorphisms and definitional
equality respectively. We start the unification with

?
� and

switch to ?
= when the domain restriction of the theory ap-

plies1. We notate a substitution of metavariables as follows:

1We can start with ?
= to turn off search modulo the type isomorphisms.

[𝑀1 [𝑥1, · · · , 𝑥𝑛1 ] ↦→ 𝑡1, · · · , 𝑀𝑚 [𝑥1, · · · , 𝑥𝑛𝑚 ] ↦→ 𝑡𝑚], where
each 𝑡𝑖 may use parameters 𝑥1, · · · , 𝑥𝑛𝑖 . We write each tran-
sition rule of the unification procedure in the following form
Θ | Γ ⊢ 𝑡

?
� 𝑢

𝜃↦−→ {Ξ | Γ𝑖 ⊢ 𝑡𝑖
?
� 𝑢𝑖 }, where Ξ is a new

metavariable context, 𝜃 is a metavariable substitution and
{Ξ | Γ𝑖 ⊢ 𝑡𝑖

?
� 𝑢𝑖 } is a new set of constraints.

The unification problem consists of solving a set of con-
straints via the following process:

1. Fully normalise both sides of each constraint using
the normalise rule (Figure 5) before applying other
transition rules.

2. Simplify each constraint by decomposing composite
terms (the decompose and permute-decompose
rule, Figures 3 and 6) and guessing the structure of
metavariables (the guess rule, Figure 8). In case mul-
tiple simplifications can be applied, choose one non-
deterministically.

3. Attempt to solve flex-rigid constraints that cannot be
simplified further.

4. If a constraint can be solved and a substitution for a
metavariables is determined, propagate the solution
throughout the remaining constraints. If no solution
can be found, backtrack.

5. Repeat until only flex-flex constraints remain.

We describe the details in the following subsections. We omit
other transition rules including decomposition of lambda
abstractions and so on as they are straightforward.

4.3 Decomposition
During unification, each constraint is gradually decomposed
into a set of simpler constraints using the decompose rule
(Figure 3). Because of the domain restriction, whether a con-
straint should be solved modulo isomorphism or definitional
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equality must be set correctly at decomposition. If a con-
straint is in "definitional mode", there is no chance return-
ing to the other mode and its derived constraints should
always be solved up to defintional equality. On the other
hand, the "up-to-isomorphism mode" is always propagated
to the codomain of dependent product/sum types, but not al-
ways the case for the domain part. For example, a constraint
on dependent product types will be decomposed as follows:

Θ | Γ ⊢ (Π𝑥 :𝐴1.𝐴2)
?
� (Π𝑥 :𝐵1 .𝐵2)

↦−→ {Θ | Γ ⊢ 𝐴1
?
= 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2}.

The domain restriction requires that the constraint of the
domains is solved up to definitional equality. However, if
either side is actually a non-dependent function type, we can
solve the constraint for the domain up to the isomorphisms.

Θ | Γ ⊢ (𝐴1 →𝐴2)
?
� (Π𝑥 :𝐵1.𝐵2)

↦−→ {Θ | Γ ⊢ 𝐴1
?
� 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2}

In other words, different decomposition rules are applied
depending on dependencies for constraints on dependent
product/sum types in order to take isomorphisms at the do-
main position into account. Note that, although less precise,
it remains sound to approximate that the domains of both
sides are relevant, always choosing the former rule.

4.4 Normalisation
To unify two terms modulo isomorphisms, it is necessary
to mutate terms in constraints using the theory. We orient
a fragment of the equations of Th to obtain a rewrite sys-
tem R. Both sides of each constraint are fully normalised
with the use of R, before applying other transition rules (the
normalise rule, Figure 5). We will explain how we take
the remaining equations into account during unification by
the permute-decompose rule in Section 4.5. The extracted
rewrite system R is presented in Figure 4. This is roughly
the same as the one used by SearchIsos [5] except that it
includes rewrite rules for the two isomorphisms we do not
adopt. Note that normalisation by R may not terminate since
we are working in an untyped setting and thus not all terms
are normalisable. We can handle this by using timeouts in
practice.
Having presented the rewrite system R, we now explain

why we excluded the following isomorphism:

Π𝑥 :𝐴.Σ𝑦:𝐵(𝑥).𝐶 (𝑥,𝑦) � Σ𝑦:(Π𝑥 :𝐴.𝐵(𝑥)).Π𝑥 :𝐴.𝐶 (𝑥,𝑦 𝑥).

Consider the following two types:

Π𝑥 :𝐴.Π𝑦:𝐴′ .Σ𝑧:𝐵(𝑥,𝑦).𝐶 (𝑧)
Π𝑦:𝐴′ .Π𝑥 :𝐴.Σ𝑧:𝐵(𝑥,𝑦).𝐶 (𝑧).

These types differ only in the order of arguments, which our
algorithm can handle using the permute-decompose rule.
If we were to adopt the isomorphism and include it in the

rewrite system R, orienting it from left to right, these types
would normalise as follows:

Σ𝑧:(Π𝑥 :𝐴.Π𝑦:𝐴′ .𝐵(𝑥,𝑦)).Π𝑥 :𝐴.Π𝑦:𝐴′ .𝐶 (𝑧 𝑥 𝑦)
Σ𝑧:(Π𝑦:𝐴′ .Π𝑥 :𝐴.𝐵(𝑥,𝑦)).Π𝑦:𝐴′ .Π𝑥 :𝐴.𝐶 (𝑧 𝑦 𝑥).

At this point, the domain restriction prevents us from con-
sidering the isomorphism between these two types. As this
example illustrates, the combination of domain restriction
and the excluded isomorphism can sometimes block domain
reordering. Since domain reordering is more beneficial for
library search, we choose to prioritize it and exclude the
isomorphism. A less general isomorphism could be adopted,
restricting the return type to non-dependent products, but
we do not currently pursue this approach.

4.5 Permutation
The non-orientable isomorphisms, i.e. reordering domains/-
components of dependent product/sum types and symmetry
of of identity types, are conceptually taken into account by
non-deterministically permuting these components during
unification. However, unrestricted application of permuta-
tions can cause exponential blow-up in the search space
and infinite loops where only permutations are repeatedly
applied without progress. To mitigate this, we restrict such
permutation to happen only at decomposition (the permute-
decompose rule, Figure 6). For example, when both sides
of a constraint are identity types, we not only apply the
standard decomposition but also try swapping the sides:

Θ | Γ ⊢ Id𝐴 (𝑡1, 𝑡2)
?
� Id𝐵 (𝑢1, 𝑢2)

↦−→ {Θ | Γ ⊢ 𝐴 ?
= 𝐵,Θ | Γ ⊢ 𝑡2

?
= 𝑢1,Θ | Γ ⊢ 𝑡1

?
= 𝑢2}

Similarly, for iterated dependent product/sum types, we per-
mute domains to bring one to the front, respecting depen-
dencies, then proceed with decomposition. For instance,

Θ | Γ ⊢ Π𝐵:Type.𝐴→𝐵→𝐴
?
� 𝐴→Π𝐵:Type.𝐵→𝐴 ↦−→

{Θ | Γ ⊢ 𝐴
?
� 𝐴,Θ | Γ ⊢ Π𝐵:Type.𝐵→𝐴

?
� Π𝐵:Type.𝐵→𝐴}.

Permutation is not performed when either side is headed
by a metavariable, like Θ | Γ ⊢ Π𝑥 :𝐴.𝐵

?
� 𝑀 [−→𝑡 ], in order

to avoid excessive branching, trading some precision for
performance.
To enable permutation in the presence of dependencies,

we sometimes need to prune certainmetavariable parameters
that block valid reordering for iterated dependent product
and sum types. Consider Π𝐴:Type.𝑀 [𝑥] →𝐴. We cannot
move 𝑀 [𝐴] before Π𝐴 : Type because the metavariable 𝑀
depends on𝐴. By pruning the parameter, i.e., [𝑀 [𝑥] ↦→?𝑁 []]
where𝑁 is a freshmetavariable, we obtainΠ𝐴:Type.𝑁 []→𝐴,
whose domains can now be reordered to 𝑁 [] →Π𝐴:Type.𝐴.

We formalise pruningwith the auxiliary judgment 𝑡 /Δ ⇒
𝑃 (Figure 7). Here, 𝑡 is a term that may contain metavari-
ables, Δ is a telescope (a list of variables with types) whose
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Θ | Γ ⊢ Type ?
= Type ↦−→ ∅

Θ | Γ ⊢ (Π𝑥 :𝐴1 .𝐴2)
?
= (Π𝑥 :𝐵1.𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
= 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
= 𝐵2}

Θ | Γ ⊢ (Σ𝑥 :𝐴1.𝐴2)
?
= (Σ𝑥 :𝐵1 .𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
= 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
= 𝐵2}

Θ | Γ ⊢ Unit ?
= Unit ↦−→ ∅

Θ | Γ ⊢ Id𝐴 (𝑡1, 𝑡2)
?
= Id𝐵 (𝑢1, 𝑢2) ↦−→ {Θ | Γ ⊢ 𝐴 ?

= 𝐵,Θ | Γ ⊢ 𝑡1
?
= 𝑢1,Θ | Γ ⊢ 𝑡2

?
= 𝑡2}

Θ | Γ ⊢ Type
?
� Type ↦−→ ∅

Θ | Γ ⊢ (Π𝑥 :𝐴1.𝐴2)
?
� (Π𝑥 :𝐵1.𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
� 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2} if 𝑥 ∉ FV(𝐴2) ∨ 𝑥 ∉ FV(𝐵2)

Θ | Γ ⊢ (Π𝑥 :𝐴1.𝐴2)
?
� (Π𝑥 :𝐵1.𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
= 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2} if 𝑥 ∈ FV(𝐴2) ∧ 𝑥 ∈ FV(𝐵2)

Θ | Γ ⊢ (Σ𝑥 :𝐴1.𝐴2)
?
� (Σ𝑥 :𝐵1 .𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
� 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2} if 𝑥 ∉ FV(𝐴2) ∨ 𝑥 ∉ FV(𝐵2)

Θ | Γ ⊢ (Σ𝑥 :𝐴1.𝐴2)
?
� (Σ𝑥 :𝐵1 .𝐵2) ↦−→ {Θ | Γ ⊢ 𝐴1

?
= 𝐵1,Θ | Γ, 𝑥 ⊢ 𝐴2

?
� 𝐵2} if 𝑥 ∈ FV(𝐴2) ∧ 𝑥 ∈ FV(𝐵2)

Θ | Γ ⊢ Unit
?
� Unit ↦−→ ∅

Θ | Γ ⊢ Id𝐴 (𝑡1, 𝑡2)
?
� Id𝐵 (𝑢1, 𝑢2) ↦−→ {Θ | Γ ⊢ 𝐴 ?

= 𝐵,Θ | Γ ⊢ 𝑡1
?
= 𝑢1,Θ | Γ ⊢ 𝑡2

?
= 𝑢2}

Figure 3. The decompose rules. The rules for the other syntactic constructs are omitted.

𝐴 ⇝ 𝐵

𝐴 ⇝R 𝐵
R𝛽𝛿 Σ𝑥 :Unit.𝐴 ⇝R 𝐴[𝑥 ↦→ tt] RΣ𝑈𝐿

𝐴 × Unit ⇝R 𝐴
RΣ𝑈𝑅 Π𝑥 :Unit.𝐴 ⇝R 𝐴[𝑥 ↦→ tt] RΠ𝑈𝐿

Π𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 ⇝R Π𝑥 :𝐴.Π𝑦:𝐵 [𝑦 ↦→𝑥] .𝐶 [𝑥 ↦→(𝑥,𝑦)] RCurry Σ𝑥 :(Σ𝑦:𝐴.𝐵).𝐶 ⇝R Σ𝑥 :𝐴.Σ𝑦:𝐵 [𝑦 ↦→𝑥] .𝐶 [𝑥 ↦→(𝑥,𝑦)] RΣAssoc

𝐵 ⇝R 𝐵′

(Π𝑥 :𝐴.𝐵) ⇝R (Π𝑥 :𝐴.𝐵′) RΠ𝑅
𝑥 ∈ FV(𝐵) 𝐴 ⇝ 𝐴′

(Π𝑥 :𝐴.𝐵) ⇝R (Π𝑥 :𝐴′ .𝐵) RΠ𝐿
𝐴 ⇝R 𝐴′

(𝐴→𝐵) ⇝R (𝐴′ →𝐵) R→𝐿

𝐵 ⇝R 𝐵′

(Σ𝑥 :𝐴.𝐵) ⇝R (Σ𝑥 :𝐴.𝐵′) RΣ𝑅
𝑥 ∈ FV(𝐵) 𝐴 ⇝ 𝐴′

(Σ𝑥 :𝐴.𝐵) ⇝R (Σ𝑥 :𝐴′ .𝐵) RΣ𝐿
𝐴 ⇝R 𝐴′

(𝐴 × 𝐵) ⇝R (𝐴′ × 𝐵) R×𝐿

Figure 4. Rewrite system R

Θ | Γ ⊢ 𝐴 ?
= 𝐵 ↦−→ {Θ | Γ ⊢ 𝐴′ ?

= 𝐵} if 𝐴 ⇝∗ 𝐴′

Θ | Γ ⊢ 𝐴 ?
= 𝐵 ↦−→ {Θ | Γ ⊢ 𝐴 ?

= 𝐵′} if 𝐵 ⇝∗ 𝐵′

Θ | Γ ⊢ 𝐴
?
� 𝐵 ↦−→ {Θ | Γ ⊢ 𝐴′ ?

� 𝐵} if 𝐴 ⇝∗
R 𝐴′

Θ | Γ ⊢ 𝐴
?
� 𝐵 ↦−→ {Θ | Γ ⊢ 𝐴

?
� 𝐵′} if 𝐵 ⇝∗

R 𝐵′

Figure 5. The normalise rules.

dependencies we would like to eliminate by pruning, and 𝑃
is the set of metavariable parameters that need to be pruned.
We write (𝑀, 𝑖) to mean the 𝑖-th parameter of the metavari-
able𝑀 . If any variable in Δ appears outside of metavariable
arguments (i.e., occurs rigidly), we cannot eliminate the de-
pendency by pruning, and thus no derivation exists in such

cases. Examples:

𝑀 [𝑥] / 𝑥 : 𝐴 ⇒ {(𝑀, 0)}
𝑀 [𝑥] 𝑁 [𝑥] / 𝑥 : 𝐴 ⇒ {(𝑀, 0), (𝑁, 0)}
𝑀 [𝑥,𝑦]𝑀 [𝑦, 𝑥] / 𝑥 : 𝐴 ⇒ {(𝑀, 0), (𝑀, 1)}
𝑀 [𝑥] 𝑦 / 𝑥 : 𝐴,𝑦 : 𝐵 fails because 𝑦 occurs rigidly.
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Iterated dependent product type Π(−−−−→𝑥𝑖 : 𝐴𝑖 ).𝐵 = Π𝑥1 : 𝐴1 . · · · .Π𝑥𝑛 : 𝐴𝑛 .𝐵

Iterated dependent sum type Σ(−−−−→𝑥𝑖 : 𝐴𝑖 ) = Σ𝑥1 : 𝐴1. · · · .Σ𝑥𝑛−1 : 𝐴𝑛−1.𝐴𝑛

Hoist(Δ) Set of telescopes obtained by bringing an element of Δ to the front and possibly applying some pruning.

Hoist(−−−−→𝑥𝑖 : 𝐴𝑖 ) = {prune(𝑃), (𝑥 𝑗 : prune(𝑃) (𝐴 𝑗 ), 𝑥1 : 𝐴1, · · · , 𝑥 𝑗−1 : 𝐴 𝑗−1, 𝑥 𝑗+1 : 𝐴 𝑗+1, · · · , 𝑥𝑛 : 𝐴𝑛)
| ∃𝑃 .𝐴 𝑗 / (𝑥1 : 𝐴1, · · · , 𝑥 𝑗−1 : 𝐴 𝑗−1) ⇒ 𝑃}

Θ | Γ ⊢ Id𝐴 (𝑡1, 𝑡2)
?
� Id𝐵 (𝑢1, 𝑢2) ↦−→ {Θ | Γ ⊢ 𝐴 ?

= 𝐵, Θ | Γ ⊢ 𝑡2
?
= 𝑢1, Θ | Γ ⊢ 𝑡1

?
= 𝑢2}

Θ | Γ ⊢ ΠΔ.𝐴
?
� Π𝑥 :𝐵1.𝐵

𝜃↦−→ {Θ | Γ ⊢ 𝐴 𝑗

?
� 𝐵1, Θ | Γ, 𝑥 𝑗 ⊢ ΠΔ′ .𝐴

?
� 𝐵 [𝑥 ↦→ 𝑥 𝑗 ]}

if ∥Δ∥ > 1 ∧ ∃(𝜃, (𝑥 𝑗 : 𝐴 𝑗 ,Δ
′)) ∈ Hoist(Δ) ∧ 𝑥 𝑗 ∉ FV(ΠΔ′ .𝐴)

Θ | Γ ⊢ ΠΔ.𝐴
?
� Π𝑥 :𝐵1.𝐵

𝜃↦−→ {Θ | Γ ⊢ 𝐴 𝑗
?
= 𝐵1, Θ | Γ, 𝑥 𝑗 ⊢ ΠΔ′ .𝐴

?
� 𝐵 [𝑥 ↦→ 𝑥 𝑗 ]}

if ∥Δ∥ > 1 ∧ ∃(𝜃, (𝑥 𝑗 : 𝐴 𝑗 ,Δ
′)) ∈ Hoist(Δ) ∧ 𝑥 𝑗 ∈ FV(ΠΔ′ .𝐴)

Θ | Γ ⊢ ΣΔ
?
� Σ𝑥 :𝐵1.𝐵2

𝜃↦−→ {Θ | Γ ⊢ 𝐴 𝑗

?
� 𝐵1, Θ | Γ, 𝑥 𝑗 ⊢ ΣΔ′ ?

� 𝐵2 [𝑥 ↦→ 𝑥 𝑗 ]}
if ∥Δ∥ > 1 ∧ ∃(𝜃, (𝑥 𝑗 : 𝐴 𝑗 ,Δ

′)) ∈ Hoist(Δ) ∧ 𝑥 𝑗 ∉ FV(ΣΔ′)

Θ | Γ ⊢ ΣΔ
?
� Σ𝑥 :𝐵1.𝐵2

𝜃↦−→ {Θ | Γ ⊢ 𝐴 𝑗
?
= 𝐵1, Θ | Γ, 𝑥 𝑗 ⊢ ΣΔ′ ?

� 𝐵2 [𝑥 ↦→ 𝑥 𝑗 ]}
if ∥Δ∥ > 1 ∧ ∃(𝜃, (𝑥 𝑗 : 𝐴 𝑗 ,Δ

′)) ∈ Hoist(Δ) ∧ 𝑥 𝑗 ∈ FV(ΣΔ′)

Figure 6. The permute-decompose rules and auxiliary definitions.

Telescope Δ ::=
−−−−→
𝑥𝑖 : 𝐴𝑖

Telescope Length ∥Δ∥
𝑡 / Δ ⇒ 𝑃 Metavariable parameters 𝑃 needs to be pruned to eliminate variables in Δ from 𝑡 .

𝑀 [−→𝑡 ] / Δ ⇒ {(𝑀, 𝑖) | 𝑡𝑖 ∈ −→
𝑡 , 𝑥 ∈ Δ, 𝑥 ∈ FV(𝑡𝑖 )}

𝑥 ∉ Δ
𝑥 / Δ ⇒ ∅

𝑐 : 𝐴 := 𝑡 ∈ S
𝑐 / Δ ⇒ ∅ Type / Δ ⇒ ∅

𝐴 / Δ ⇒ 𝑃 𝐵 / Δ ⇒ 𝑄

Π𝑥 :𝐴.𝐵 / Δ ⇒ 𝑃 ∪𝑄

𝑡 / Δ ⇒ 𝑃

𝜆𝑥.𝑡 / Δ ⇒ 𝑃

𝑡 / Δ ⇒ 𝑃 𝑢 / Δ ⇒ 𝑄

𝑡 𝑢 / Δ ⇒ 𝑃 ∪𝑄

𝐴 / Δ ⇒ 𝑃 𝐵 / Δ ⇒ 𝑄

Σ𝑥 :𝐴.𝐵 / Δ ⇒ 𝑃 ∪𝑄
𝑡 / Δ ⇒ 𝑃 𝑢 / Δ ⇒ 𝑄

(𝑡,𝑢) / Δ ⇒ 𝑃 ∪𝑄

𝑡 / Δ ⇒ 𝑃

𝜋1 (𝑡) / Δ ⇒ 𝑃

𝑡 / Δ ⇒ 𝑃

𝜋2 (𝑡) / Δ ⇒ 𝑃

Unit / Δ ⇒ ∅ tt / Δ ⇒ ∅
𝐴 / Δ ⇒ 𝑃 𝑡 / Δ ⇒ 𝑄 𝑢 / Δ ⇒ 𝑅

Id𝐴 (𝑡,𝑢) / Δ ⇒ 𝑃 ∪𝑄 ∪ 𝑅

prune(𝑃) Metavariable substitution that prunes away metavariable parameters in 𝑃 .

prune(𝑃) = [𝑀 [𝑥1, · · · , 𝑥𝑛] ↦→ 𝑀 ′ [𝑥 𝑗1 , · · · , 𝑥 𝑗𝑛−𝑘 ], · · · ]
where𝑀 ′ is a fresh metavariable, 𝑘 = |{𝑖 | (𝑀, 𝑖) ∈ 𝑃}|, and 1 ≤ 𝑗1 < · · · < 𝑗𝑛−𝑘 ≤ 𝑛 satisfy (𝑀, 𝑗1), · · · , (𝑀, 𝑗𝑛−𝑘 ) ∉ 𝑃

Figure 7. Pruning and auxiliary definitions.

This judgment does not handle nested metavariables. For
instance, when eliminating 𝑥 from𝑀 [𝐿[𝑥], 𝑁 [𝑥]], the judg-
ment only returns the pruning {(𝑀, 0), (𝑀, 1)}, although
pruning the arguments of 𝐿 and 𝑁 individually would also
eliminate the dependency. We currently leave such nested
metavariables unhandled, as it is unclear whether this is
useful in practice.

4.6 Guessing Metavariables
When a metavariable appears at a certain position of a term,
we may partially guess its structure to make progress (the
guess rule, Figure 8). For example, if a meta-application
𝑀 [−→𝑡 ] is applied to another term𝑢, i.e.𝑀 [−→𝑡 ] 𝑢, we can infer
that the result of the meta-application is a function and so
should be substituted like [𝑀 [−→𝑥 ] ↦→ 𝜆𝑦.𝑀 ′ [−→𝑥 ,𝑦]], where
𝑀 ′ is a fresh metavariable.
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Θ | Γ ⊢ Σ𝑥 :𝑀 [−→𝑡 ] .𝐵
?
� 𝐴

[𝑀 [−→𝑥 ] ↦→Unit]
↦−→ {Θ | Γ ⊢ Σ𝑥 :Unit.𝐵

?
� 𝐴}

Θ | Γ ⊢ Σ𝑥 :𝑀 [−→𝑡 ] .𝐵
?
� 𝐴

[𝑀 [−→𝑥 ] ↦→Σ𝑦:𝑀1 [−→𝑥 ] .𝑀2 [−→𝑥 ,𝑦 ] ]
↦−→ {Θ, 𝑀1 : [−→★ ]★, 𝑀2 : [−→★ ,★]★ | Γ ⊢ Σ𝑥 :(Σ𝑦:𝑀1 [−→𝑡 ] .𝑀2 [−→𝑡 ,𝑦]).𝐵

?
� 𝐴}

if 𝐴 is a dependent sum type or headed by a (parametrised) metavariable

Θ | Γ ⊢ Σ𝑥 :𝐴.𝑀 [−→𝑡 ]
?
� 𝐵

[𝑀 [−→𝑥 ] ↦→Unit]
↦−→ {Θ | Γ ⊢ 𝐴 × Unit

?
� 𝐵}

Θ | Γ ⊢ Σ𝑥 :𝐴.𝑀 [−→𝑡 ]
?
� 𝐵

[𝑀 [−→𝑥 ] ↦→Σ𝑦:𝑀1 [−→𝑥 ] .𝑀2 [−→𝑥 ,𝑦 ] ]
↦−→ {Θ, 𝑀1 : [−→★ ]★, 𝑀2 : [−→★ ,★]★ | Γ ⊢ Σ𝑥 :𝐴.Σ𝑦:𝑀1 [−→𝑡 ] .𝑀2 [−→𝑡 ,𝑦]

?
� 𝐵}

if 𝐵 is a dependent sum type or headed by a (parametrised) metavariable

Θ | Γ ⊢ Π𝑥 :𝑀 [−→𝑡 ] .𝐵
?
� 𝐴

[𝑀 [−→𝑥 ] ↦→Unit]
↦−→ {Θ | Γ ⊢ Π𝑥 :Unit.𝐵

?
� 𝐴}

Θ | Γ ⊢ Π𝑥 :𝑀 [−→𝑡 ] .𝐵
?
� 𝐴

[𝑀 [−→𝑥 ] ↦→Σ𝑦:𝑀1 [−→𝑥 ] .𝑀2 [−→𝑥 ,𝑦 ] ]
↦−→ {Θ, 𝑀1 : [−→★ ]★, 𝑀2 : [−→★ ,★]★ | Γ ⊢ Π𝑥 :(Σ𝑦:𝑀1 [−→𝑡 ] .𝑀2 [−→𝑡 ,𝑦]).𝐵

?
� 𝐴}

if 𝐴 is a dependent product type or headed by a (parametrised) metavariable

Θ | Γ ⊢ Π𝑥 :𝐴.𝑀 [−→𝑡 ]
?
� 𝐵

[𝑀 [−→𝑥 ] ↦→Π𝑦:𝑀1 [−→𝑥 ] .𝑀2 [−→𝑥 ,𝑦 ] ]
↦−→ {Θ, 𝑀1 : [−→★ ]★, 𝑀2 : [−→★ ,★]★ | Γ ⊢ Π𝑥 :𝐴.(Π𝑦:𝑀1 [−→𝑡 ] .𝑀2 [−→𝑡 ,𝑦])

?
� 𝐴}

if 𝐴 is a dependent product type or headed by a (parametrised) metavariable

Figure 8. The guess rules for dependent product/sum types. May unblock the normalise or permute-decompose rule. The
other transitions rules for application and projection are omitted.

It is interesting that we can guess the structure of a meta-
application if it appears in the (co)domain of a dependent
product or dependent sum type. In the rewrite system R,
these types "eliminate" dependent sums and units at their
domain. Therefore, it is a valid guess that the result of a meta-
application at the position is a dependent sum or unit type.
That is, inferring [𝑀 [] ↦→ Σ𝑦:𝑀1 [] .𝑀2 [𝑥]] of Π𝑥 :𝑀 [] .𝐴,
for instance. This induces further normalisation by the nor-
malise rule andmay contribute to finding a unifier, as shown
in Figure 9. We would not have been able to solve the con-
straint without the guess in this particular example. Similarly,
in order to give the permute-decompose rule a chance to
fire, we can infer that the result of a metavariable application
at the codomain of a dependent product/sum type is again
dependent product/sum type, respectively.

Applying such guesses blindly can sometimes only make
a constraint larger without contributing to a solution. For
example, consider the constraint (𝑀 [] →Type)

?
� Unit (con-

text omitted). Guessing [𝑀 [] ↦→ Σ𝑥 :𝑀1 [] .𝑀2 [𝑥]] produces
the larger constraint (Π𝑥 :𝑀1 [] .𝑀2 [𝑥] →Type)

?
� Unit. This

does not help in finding a solution. The issue here is that we
did not take into account the Unit on the right-hand side,
which cannot be obtained from such a guess. Therefore, we
impose certain conditions on some of the guess rules to elim-
inate such unproductive guesses. For example, we only guess
[𝑀 [] ↦→ Σ𝑦:𝑀1 [] .𝑀2 [𝑥]] for Π𝑥 :𝑀 [] .𝐴 when the other side
of the constraint is a dependent product type or is headed
by a metavariable application.

4.7 Solving Metavariables
Flex-Rigid constraints are solved similarly to [14]. To solve
a flex-rigid constraint, i.e. Θ | Γ ⊢ 𝑀 [𝑡1, · · · , 𝑡𝑛]

?
� 𝑢 or

Θ | Γ ⊢ 𝑀 [𝑡1, · · · , 𝑡𝑛]
?
= 𝑢, the algorithm goes through a set

of candidate solutions, which is generated using a heuristic
that resembles Huet-styles projection bindings generalised
for untyped SOAS.

5 Implementation and Examples
We have implemented a prototype of our unification algo-
rithm in Haskell2. In this section we will describe the imple-
mentation and give concrete examples.

5.1 Implementation Details
There are two differences in the core language in the imple-
mentation and one described in Section 3:

• Contrary to the assumption made in Section 3, the
core language has the inductively defined identity type,
whose swap operation is not definitionally involutive.

• The core language has both non-dependent and depen-
dent function and pair types. This sometimes allows
skipping dependency checking, thus enabling efficient
determination of whether the constraint should be
solved up to the isomorphism or definitional equality
on decomposition. However, dependency checking is
still needed when permuting function domains and
pair components. This issue could be addressed by

2GitHub repository: https://github.com/wasabi315/dependent-type-search
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{Θ | Γ ⊢ 𝑀 [] →𝐴
?
� Π𝐵:Type.𝐵→𝐴} where Θ | Γ = (𝑀 : []★ | 𝐴 : ★)

[𝑀 [ ] ↦→Σ𝑥 :𝑀1 [ ] .𝑀2 [𝑥 ] ]↦−→ {Θ′ | Γ ⊢ (Σ𝑥 :𝑀1 [] .𝑀2 [𝑥]) →𝐴
?
� Π𝐵:Type.𝐵→𝐴} where Θ′ =𝑀 : []★, 𝑀1 : []★, 𝑀2 : [★] ★ (guess)

↦−→ {Θ′ | Γ ⊢ Π𝑥 :𝑀1 [] .𝑀2 [𝑥] →𝐴
?
� Π𝐵:Type.𝐵→𝐴} (normalise)

↦−→ {Θ′ | Γ ⊢ 𝑀1 []
?
= Type, Θ′ | Γ, 𝐵 : ★ ⊢ 𝑀2 [𝐵] →𝐴

?
� 𝐵→𝐴} (decompose)

[𝑀1 [ ] ↦→Type]
↦−→ {Θ′ | Γ, 𝐵 : ★ ⊢ 𝑀2 [𝐵] →𝐴

?
� 𝐵→𝐴}

↦−→ {Θ′ | Γ, 𝐵 : ★ ⊢ 𝑀2 [𝐵]
?
� 𝐵, Θ′ | Γ, 𝐵 : ★ ⊢ 𝐴

?
� 𝐴} (decompose)

[𝑀2 [𝑥 ] ↦→𝑥 ]
↦−→ {Θ′ | Γ, 𝐵 : ★ ⊢ 𝐴

?
� 𝐴} ↦−→ ∅ (decompose)

Figure 9. Guessing the structure of a metavariable at the argument position

carrying extra information about variable usage at
binding site, in a similar way to [22].

Definitions are unfolded only when necessary, following
the technique described in [12]. This approach avoids unnec-
essary unfolding and enables clearer presentation of terms
in substitutions for metavariables in queries.

5.2 Examples
The implementation features a prototype interactive search
tool for the core language. It performs a straightforward
search over the list of signatures from modules specified, at-
tempting to unify each signature with the query. To support
search up to generalisation, top-level dependent function
types in signatures are instantiated non-deterministically
with fresh metavariables. Type-checking of unifiers is not
yet implemented, so search results may include ill-typed
solutions. We have prepared a small dataset comprising 4
modules and a total of 38 constant definitions. All search
examples shown below completed instantly. We plan to eval-
uate the performance of the search tool on larger, real-world
datasets in the future.
One may want to search for the list recursor with the

query in the first line:

> (A B : Type) -> (B * A -> B) -> List A -> B -> B
List.foldr :

(A B : Type) -> (A -> B -> B) -> B -> List A -> B
instantiation: {A = A, B = B}

The search tool successfully identifies foldr from the query
because the search operates modulo domain reordering and
currying. It not only displays the matched library compo-
nents, but also shows how they are instantiated and which
terms are assigned to the metavariables in the query. In this
particular example, the instantiation is straightforward.

The tool also searches modulo symmetry of identity types.

> (m : Nat) -> Eq Nat (suc m) 0 -> False
Natural.zero-suc-neq :

(m : Nat) -> Not (Eq Nat 0 (suc m))
instantiation: {m = m}

The search is modulo 𝛿-conversion and allows the user
to include (parametrised) metavariables in the query. Note
that the definition of addition is not expanded in the shown
metavariable substitution, thanks to lazy unfolding of defini-
tions.

> (m n : Nat) -> Eq Nat ?F[m,n] ?F[n,m]
Natural.add-comm : Commutativity Nat add

instantiation: {?F[x0,x1] = add x0 x1}

The example below shows the flexibility of search up to
generalisation (and 𝛿-conversion). The commutativity state-
ment got successfully instantiated with 42.

> (m : Nat) -> Eq Nat (add 42 m) (add m 42)
Natural.add-comm : Equality.Commutativity Nat add

instantiation: {x = 42, y = m}

This last example shows the combination of search up to
generalisation and more premises (through the use of the
metavariable manually added).

> (A : Type) -> (A -> A -> A) -> List A -> ?M[A] ->
A

List.foldr :
(A B : Type) -> (A -> B -> B) -> B -> List A -> B
instantiation: {A = A, B = A}
substitution: {?M[x0] = x0}

Equality.transport :
(A B : Type) -> Eq Type A B -> A -> B
instantiation: {A = A -> A -> A, B = List A -> A}
substitution: {?M[x0] = Eq Type (x0 -> x0 -> x0)

(List x0 -> x0)}

Basic.id : (A : Type) -> A -> A
instantiation: {A = (A -> A -> A) -> List A -> A}
substitution: {?M[x0] = (x0 -> x0 -> x0) -> List

x0 -> x0}
... (omitted)

The query resulted in many suggestions including not only
foldr, as expected, but also highly non-trivial ones. For better
display, we could rank (or even filter) the search results de-
pending on the complexity of instantiation and substitution,
as described in [21].
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6 Conclusion and Future Work
In this work, we developed a semi-algorithm for unification
modulo type isomorphisms, with the goal of enabling more
flexible type-based library search than previous tools.

Several aspects remain open for exploration. First, as dis-
cussed in Section 4, we intend to incorporate type informa-
tion from libraries and ensure well-typedness throughout
unification. To achieve this, we have to track and verify the
types ofmetavariables, since some transition rulesmay other-
wise produce ill-typed solutions. For example,it is necessary
to check whether a metavariable remains well-typed after re-
moving pruned parameters [1]. Second, our algorithm should
be extended to actually compute isomorphisms. Currently,
the algorithm only determines whether type isomorphisms
exist. Producing concrete isomorphisms would provide wit-
nesses to help users understand why library components
match, and could even assist with goal completion (i.e., code
generation) when integrated into ITPs. This extension is also
necessary for lifting domain restrictions, as it would require
handling "dependent" isomorphisms (those that depend on
other isomorphisms). Third, we should consider support
for other pervasive language features, including implicit ar-
guments, type classes (instance arguments), and inductive
definitions. For type classes, it would be valuable to develop
a more principled approach to extending methods, for ex-
ample, by employing order-sorted unification as described
by [16].
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