module Haskell.Extra.Dec where
open import Haskell.Prelude
open import Haskell.Extra.Refinement
open import Agda.Primitive
private variable
ℓ : Level
P : Type
@0 Reflects : Type ℓ → Bool → Type ℓ
Reflects P True = P
Reflects P False = P → ⊥
of : {b : Bool} → if b then P else (P → ⊥) → Reflects P b
of {b = False} np = np
of {b = True} p = p
invert : ∀ {b} → Reflects P b → if b then P else (P → ⊥)
invert {b = False} np = np
invert {b = True} p = p
extractTrue : ∀ { b } → ⦃ true : b ≡ True ⦄ → Reflects P b → P
extractTrue {b = True} p = p
extractFalse : ∀ { b } → ⦃ true : b ≡ False ⦄ → Reflects P b → (P → ⊥)
extractFalse {b = False} np = np
mapReflects : ∀ {cond} → (a → b) → (b → a)
→ Reflects a cond → Reflects b cond
mapReflects {cond = False} f g x = x ∘ g
mapReflects {cond = True} f g x = f x
Dec : ∀ {ℓ} → @0 Type ℓ → Type ℓ
Dec P = ∃ Bool (Reflects P)
{-# COMPILE AGDA2HS Dec inline #-}
mapDec : {@0 a b : Type}
→ @0 (a → b)
→ @0 (b → a)
→ Dec a → Dec b
mapDec f g (True ⟨ x ⟩) = True ⟨ f x ⟩
mapDec f g (False ⟨ h ⟩) = False ⟨ h ∘ g ⟩
{-# COMPILE AGDA2HS mapDec transparent #-}
ifDec : Dec a → (@0 {{a}} → b) → (@0 {{a → ⊥}} → b) → b
ifDec (b ⟨ p ⟩) x y = if b then (λ where {{refl}} → x {{p}}) else (λ where {{refl}} → y {{p}})
{-# COMPILE AGDA2HS ifDec inline #-}
instance
iDecIsTrue : {b : Bool} → Dec (IsTrue b)
iDecIsTrue {False} = False ⟨ (λ ()) ⟩
iDecIsTrue {True} = True ⟨ IsTrue.itsTrue ⟩
{-# COMPILE AGDA2HS iDecIsTrue transparent #-}
iDecIsFalse : {b : Bool} → Dec (IsFalse b)
iDecIsFalse {b} = mapDec isTrueNotIsFalse isFalseIsTrueNot (iDecIsTrue {not b})
where
@0 isTrueNotIsFalse : {b : Bool} → IsTrue (not b) → IsFalse b
isTrueNotIsFalse {False} IsTrue.itsTrue = IsFalse.itsFalse
@0 isFalseIsTrueNot : {b : Bool} → IsFalse b → IsTrue (not b)
isFalseIsTrueNot {False} IsFalse.itsFalse = IsTrue.itsTrue
{-# COMPILE AGDA2HS iDecIsFalse inline #-}